Lessons in Effector and NLR Biology of Plant-Microbe Systems.

نویسندگان

  • Aleksandra Białas
  • Erin K Zess
  • Juan Carlos De la Concepcion
  • Marina Franceschetti
  • Helen G Pennington
  • Kentaro Yoshida
  • Jessica L Upson
  • Emilie Chanclud
  • Chih-Hang Wu
  • Thorsten Langner
  • Abbas Maqbool
  • Freya A Varden
  • Lida Derevnina
  • Khaoula Belhaj
  • Koki Fujisaki
  • Hiromasa Saitoh
  • Ryohei Terauchi
  • Mark J Banfield
  • Sophien Kamoun
چکیده

A diversity of plant-associated organisms secrete effectors-proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat region (NLR)-containing proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A plant phosphoswitch platform repeatedly targeted by type III effector proteins regulates the output of both tiers of plant immune receptors.

Plants detect microbes via two functionally interconnected tiers of immune receptors. Immune detection is suppressed by equally complex pathogen mechanisms. The small plasma-membrane-tethered protein RIN4 negatively regulates microbe-associated molecular pattern (MAMP)-triggered responses, which are derepressed upon bacterial flagellin perception. We demonstrate that recognition of the flagelli...

متن کامل

Tomato I2 Immune Receptor Can Be Engineered to Confer Partial Resistance to the Oomycete Phytophthora infestans in Addition to the Fungus Fusarium oxysporum.

Plants and animals rely on immune receptors, known as nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins, to defend against invading pathogens and activate immune responses. How NLR receptors respond to pathogens is inadequately understood. We previously reported single-residue mutations that expand the response of the potato immune receptor R3a to AVR3a(EM), a stealthy...

متن کامل

Recent Advances in Plant NLR Structure, Function, Localization, and Signaling

Nucleotide-binding domain leucine-rich repeat (NLR) proteins play a central role in the innate immune systems of plants and vertebrates. In plants, NLR proteins function as intracellular receptors that detect pathogen effector proteins directly, or indirectly by recognizing effector-induced modifications to other host proteins. NLR activation triggers a suite of defense responses associated wit...

متن کامل

The role of microRNAs and phytohormones in plant immune system

The plant-pathogen interaction is a multifactor process that may lead to resistance or susceptible responses of plant to pathogens. During the arms race between plant and pathogens, various biochemical, molecular and physiological events are triggered in plant cells such as ROS signaling, hormone activation and gene expression reprogramming. In plants, microRNAs (miRNAs) are key post-transcript...

متن کامل

A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis

Plant immunity is often triggered by the specific recognition of pathogen effectors by intracellular nucleotide-binding, leucine-rich repeat receptors (NLR). Plant NLRs contain an N-terminal signaling domain that is mostly represented by either a Toll-interleukin1 receptor (TIR) domain or a coiled coil (CC) domain. In many cases, single NLR proteins are sufficient for both effector recognition ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular plant-microbe interactions : MPMI

دوره 31 1  شماره 

صفحات  -

تاریخ انتشار 2018